Are Drug Prices Too High?
If So, Why?

Geoffrey Joyce, PhD
University of Southern California
Outline

• Role of Rx drugs in rising health care spending
• Innovation versus access
• Drug development and reimbursement
• Pharmaceutical supply chain and PBMs
Outline

- Role of Rx drugs in rising health care spending
- Innovation versus access
- Drug development and reimbursement
- Pharmaceutical supply chain and PBMs
Health Care Spending is Rising as a Share of Total Income in the U.S.

Wealthier Countries Spend More

Note: 1999 data for Luxembourg and Poland; 1998 data for Sweden and Turkey

It is More than Just Health Care

...It’s a Public Finance Issue
Allocation of Federal Health Care Spending by 2020

- About **one-half** to people **age 65 and older**
- About **one-quarter** to the **blind and disabled**
- About **one-quarter** to **able-bodied nonelderly** people
What Role Do Rx Drugs Play?

Rx Drugs as Share of Total Health Spending

- **Employer Plans**: 21%
- **Medicare**:
 - Part D: 17%
 - Part B: 10%
- **NHE**: 10%

[Source: USC Schaeffer]
Rx Drug Spending is Disproportionate Target

“Cost of Rx Drugs is Unsustainable” 2017 Yale report*

1. Spending on Rx drugs is increasing faster than any other component of health care spending

2. A growing number of Americans report difficulty affording their medications

*Curbing Unfair Drug Prices, Yale Law and Public Health Schools, August 2017
Net of Discounts, Price Increases Are Modest

Source: QuintilesIMS, National Sales Perspectives, Dec 2016; QuintilesIMS Institute
“Cost of Rx Drugs is Unsustainable”

Yale 2017 report

- Spending on Rx drugs is increasing faster than any other component of health care spending

- A growing number of Americans report difficulty affording their medications

Curbing Unfair Drug Prices, Yale Law and Public Health Schools, August 2017
Generic drugs now account for 90% of all prescriptions

Source: Statista
Generic drugs ensure long-term access to medications through lower prices

Express Scripts Prescription Price Index

Source: Peterson-Kaiser Health System Tracker.
Outline

• Role of Rx drugs in rising health care spending
 • Innovation versus access
 • Drug development and reimbursement
• Pharmaceutical supply chain and PBMs
The Innovation-Access Dilemma

Short Run
- Society wants unfettered access to new treatments
 - Markups limit access
 - Prices should be set at cost of production

Long Run
- Society wants innovators to develop new treatments
 - Pharmaceutical R&D is especially risky
 - Financial incentives needed to reward risk
 - Requires IP protection: patents, market exclusivity, research subsidies

SOURCE: Citizen Vox / Dorry Samuels
As a result, launch prices are often controversial.
This dilemma played out dramatically with HIV

• One of the most devastating diseases globally

• New technology in the mid-1990’s revolutionized care
 – Highly active antiretroviral therapy (HAART)

• Protests over the high price of HAART

SOURCE: Ecumenical Advocacy Alliance / Paul Jeffrey
HAART had a dramatic impact on survival

Probability of Survival

Years since infection

1984

1994

2000

Most of the benefits of HAART flowed to patients

- 5% of the value flowed to manufacturers (the innovators)
- 95% of the value flows to patients (consumers)

Substantial evidence of a strong relationship between pricing power and innovation

• Evidence derives from several sources:
 – Cross-national
 – Within country natural-experiments induced by policy experiments
 – Presumptively exogenous variation in demand
Dementia kills about 1.5 million people globally — about the same as diarrhea and tuberculosis...

Leading Causes of Death Worldwide, 2015

<table>
<thead>
<tr>
<th>Cause</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischaemic heart disease</td>
<td>8.8 M</td>
</tr>
<tr>
<td>Stroke</td>
<td>6.2 M</td>
</tr>
<tr>
<td>Lower respiratory infections</td>
<td>3.2 M</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>3.2 M</td>
</tr>
<tr>
<td>Trachea, bronchus, lung cancers</td>
<td>1.7 M</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1.6 M</td>
</tr>
<tr>
<td>Alzheimer's and other dementias</td>
<td>1.5 M</td>
</tr>
<tr>
<td>Diarrheal diseases</td>
<td>1.4 M</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>1.4 M</td>
</tr>
<tr>
<td>Road injury</td>
<td>1.3 M</td>
</tr>
<tr>
<td>Cirrhosis of the liver</td>
<td>1.2 M</td>
</tr>
<tr>
<td>Kidney diseases</td>
<td>1.1 M</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>1.1 M</td>
</tr>
</tbody>
</table>

Source: World Health Organization
...but the distribution of the disease burden differs dramatically by income

<table>
<thead>
<tr>
<th>Lower Middle-Income Countries</th>
<th>High Income Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischaemic heart disease</td>
<td>Ischaemic heart disease</td>
</tr>
<tr>
<td>3.3 M</td>
<td>1.7 M</td>
</tr>
<tr>
<td>Stroke</td>
<td>Stroke</td>
</tr>
<tr>
<td>2.0 M</td>
<td>758 K</td>
</tr>
<tr>
<td>Lower resp. infections</td>
<td>Alzheimer's and dementias</td>
</tr>
<tr>
<td>1.5 M</td>
<td>705 K</td>
</tr>
<tr>
<td>COPD</td>
<td>Lung cancers</td>
</tr>
<tr>
<td>1.2 M</td>
<td>580 K</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>COPD</td>
</tr>
<tr>
<td>1.0 M</td>
<td>500 K</td>
</tr>
<tr>
<td>Diarrhoeal diseases</td>
<td>Lower respiratory infections</td>
</tr>
<tr>
<td>905 K</td>
<td>448 K</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Colon and rectum cancers</td>
</tr>
<tr>
<td>707 K</td>
<td>323 K</td>
</tr>
<tr>
<td>Preterm birth complications</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>706 K</td>
<td>265 K</td>
</tr>
<tr>
<td>Cirrhosis of the liver</td>
<td>Kidney diseases</td>
</tr>
<tr>
<td>594 K</td>
<td>213 K</td>
</tr>
<tr>
<td>Road injury</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>559 K</td>
<td>183 K</td>
</tr>
<tr>
<td>Kidney diseases</td>
<td>Pancreas cancer</td>
</tr>
<tr>
<td>485 K</td>
<td>175 K</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>Self-harm</td>
</tr>
<tr>
<td>453 K</td>
<td>170 K</td>
</tr>
<tr>
<td>Birth asphyxia and trauma</td>
<td>Cirrhosis of the liver</td>
</tr>
<tr>
<td>414 K</td>
<td>164 K</td>
</tr>
</tbody>
</table>

Source: World Health Organization
More R&D for Alzheimer’s than TB

Treatments Under Development, 2017

The 1982 US Orphan Drug Act increased development for rare diseases

Source: W. Yin, *Journal of Health Economics*, 2008 (Figure 1).
Part D increased development in classes favoring Medicare patients

Top U.S. Therapeutic Classes, by Sales ($ Billion, 2016)

- HIV antivirals: 25
- Antivirals (ex-HIV): 33
- Mental health: 37
- Autoimmune: 45
- Antibiotics and vaccines: 54
- Respiratory: 54
- Antidiabetes: 66
- Pain: 68
- Cardiovascular: 71
- Oncologics: 75

Source: Statista
Outline

• Role of Rx drugs in rising health care spending

• Innovation versus access

• Drug development and reimbursement

• Pharmaceutical supply chain and PBMs
The costs of drug development have increased over time

Average Cost to Develop One New Approved Drug—Including the Cost of Failures
(in Constant 2013 Dollars)

KEY DRIVERS of increasing R&D costs:
• increased clinical trial complexity
• larger clinical trial sizes
• greater focus on targeting chronic and degenerative diseases
• higher failure rates for drugs tested in earlier-phase clinical studies

*$Previous research by the same author estimated the average R&D costs in the early 2000s at $1.2 billion in constant 2000 dollars (see DiMasi JA, Grabowski HG. The cost of biopharmaceutical R&D: is biotech different? Managerial Decis Economics. 2007;28:469-479). That estimate is based on the same underlying survey as the author’s estimates for the 1990s to early 2000s reported here ($800 million in constant 2000 dollars) but is updated for changes in the cost of capital.

Source: DiMasi JA, et al. 21

USC Schaeffer
Expect 30-35 new molecules per year

Global Launches of New Molecular Entities

Source: IMS Institute for Healthcare Informatics, October 2013
The R&D problem

The technology sector follows Moore’s Law
- Doubling # transistors on an integrated circuit every year

Opposite trend in pharmaceutical R&D
- R&D Efficiency = \(\frac{\text{No of new drugs}}{\$ \text{ billion spent on R&D}} \)
- Steady decline in R&D efficiency over the past 5 decades
US Trends in R&D efficiency (inflation-adjusted)

NOTES: based on a figure that originally appeared in a Bernstein Research report (The Long View — R&D productivity; 30 Sep 2010).
Why is R&D efficiency declining?

1. The bar keeps rising
 - Yesterday’s blockbuster is today’s generic
 - Growing inventory of approved medicines increases clinical threshold needed to obtain approval

Consequences:
 - Reduces the value of undiscovered drugs
 - Deters R&D in some areas
 - Crowds R&D in hard to treat diseases
Why is R&D efficiency declining?

2. Cautious regulators

- Regulator is more risk tolerant when few good treatment options exist
 - e.g. HIV drugs in 1980’s
- Progress raises evidentiary hurdles for approval, adoption and reimbursement
 - Increases clinical trial size
 - Greater concern about adverse events
- Bottom line: regulators are more cautious
Advances in basic and regulatory science have not compensated for R&D productivity declines

- Enormous progress in basic research and screening methods
- Increased efforts by regulators to guide emerging technologies
- Yet, the probability that a small-molecule drug successfully completes clinical trials is unchanged over past 50 years

Industry response: Mergers, licensing, R&D reductions

Top 20 pharmaceutical companies by market capitalization in 1995

- Schering-Plough
 - Wyeth
 - Pharmacia
 - Warner-Lambert
 - Wellcome
 - SmithKline Beecham
 - Astra AB

- Astellas
- Daiichi Sankyo

Acquired

- GlaxoSmithKline
- Merck & Co.
- Pfizer
- AstraZeneca
- Bayer
- Takeda
- Roche

- Amgen
- Bristol-Myers Squibb
- Johnson & Johnson
- Eli Lilly

Dropped out of top 20

Top 20 survivors¹

¹ Still among the top 20 pharmaceutical companies by market capitalization as of Dec 31, 2012.

Source: Dealogic; TPSi; McKinsey analysis
R&D responses also reflect uncertain reimbursement

- Spending per patient for a drug is rising
- Median number of patients treated is falling
- Can high nominal prices compensate for smaller patient populations?
Example of Patents and Market Exclusivity

<table>
<thead>
<tr>
<th>2000</th>
<th>2004</th>
<th>2010</th>
<th>2012</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-year patent filed on a drug</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hatch-Waxman Act: extends patent for one-half of time drug was in clinical trials (3 years) + all time time drug was under FDA review (2 years), up to max of 5 years.

Effective patent life:

- 8 years remaining on original patent +
- 5 year extension due to Hatch-Waxman +
- 0.5 year pediatric extension for conducting pediatric dosing studies.

Note: Generic manufacturers need to prove their drug is bio-equivalent to the drug losing patent protection.
With Lack of Federal Legislation, States Taking the Lead in Constraining Rx Prices

• In 2017, 80+ Rx pricing bills proposed in 30+ states
 – Legislation passed in MD, NY and NV
 – Several states considered bills to lower drug prices

• Targeting excessive pricing of generic and brand drugs
 – Prohibiting unfair launch prices
 – Capping annual price increases

• Mandating the release of pricing information
 – Development, manufacturing, and marketing costs on each drug
Are these the Right Policies?

• Ensuring patient access is a worthy goal
 – Out-of-pocket maximums and/or annual caps protect highest users

• Targeting Rx drugs with price controls is misplaced
 – Many problems with our current system
 – Setting long-term policies based on short-term price controls will not effectively address them
 – Lessen the incentives for drug innovation

• Instead: restructure current third party payer system
Outline

• Role of Rx drugs in rising health care spending
• Innovation versus access
• Drug development and reimbursement

• Pharmaceutical supply chain and PBMs
The Role of the Supply Chain in High Drug Prices

Administer prescription drug insurance benefits

• Real time claims adjudication
• Manage a network of pharmacies
• Negotiate rebates for the first time
• Administer prescription drug cards
• Offer limited mail service fulfillment
• Interventions
 • Drug interactions
 • Limited DUR

PBM Humble Beginnings – 1980s
PBM Growth & Evolution – 1990s

- **Plan administration expansion**
 - HMO/Managed Care/Self-funded
 - Expansion of rebates and formulary design
 - Aggressive mail order growth
 - More clinical services
 - DUR/Retrospective DUR/Interventions/Disease Management/Drug interactions
 - More competitive rebates
 - Expansion of data offerings

- **Pharmaceutical manufacturers buy PBMs**
 - Establish greater presence in managed care
 - Secure formulary status for their products
PBM Growth & Evolution — 2000s

- PBM began to offer enhanced clinical services
 - Enhanced DUR review; prior authorization
 - Clinical account management
 - Increasingly sophisticated data driven strategies
 - Consumer behavior modifications
 - Provider data
 - Enhanced member level data
- PBM consolidation
 - Negotiate better discounts and rebates
 - Lower reimbursement for network pharmacies
 - Lower Rx benefit costs for clients
Three PBMs Control 70% - 75% of the Market

- Provide key services:
 - Administration
 - Claims processing
 - Utilization review

- Negotiate directly with manufacturers:
 - Prices
 - Formulary placement

- Leverage market power (DOJ allows merger of #’s 1 & 2 in the industry)
Lack of Transparency Allows PBMs to Make Money in a Variety of Ways

1. Rebates from manufacturers
 - Formulary placement/exclusions drive utilization
 - Increasing size/awareness of rebates led to new contracts
 - “Pass through” or guarantee % of rebate to plan sponsor
 - PBMs responded by adding an assortment of “administrative fees”

2. Spread Pricing
 - Buy low, sell high
 - Reimburse pharmacy $X
 - Bill plan sponsor ($X + $Y)
Lack of Transparency Allows PBMs to Make Money in a Variety of Ways

3. Maximum Allowable Cost (MAC) Pricing

- Each PBM sets the MAC price or upper limit it will pay for generic and multisource drugs,
 - e.g. $15 for a 30-day supply of 20mg atorvastatin
- No standard methodology for deriving MAC list
- Plan sponsors often unaware of MAC price
 - PBMHs create multiple MACs for different entities
 - And can change them at will
- Used to create a spread between what they charge a plan and amount they reimburse the pharmacy
How Much Does the Supply Chain Add to the Price of a Drug?

• **5.8x**: Average price difference between what a generic manufacturer receives per pill and what the health plan charges the same manufacturer when its employees use the drug

• Another example:

<table>
<thead>
<tr>
<th>Drug generic (brand)</th>
<th>Strength / Qty</th>
<th>Price charged to employer</th>
<th>Online Price (uninsured consumer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>atorvastatin (Lipitor)</td>
<td>40mg / 90</td>
<td>$153.73</td>
<td>$17.89(^a) - $66.34(^b)</td>
</tr>
<tr>
<td>rosvuvastatin (Crestor)</td>
<td>40mg / 90</td>
<td>$158.42</td>
<td>$24.66(^c) - $257.52(^d)</td>
</tr>
</tbody>
</table>

Notes: \(^a\) Ralphs; \(^b\) Walmart; \(^c\) Costco; \(^d\) Walgreens. Online prices from GoodRx on 6/12/18.
Consolidation & Conflict of Interest
Raise Drug Prices

• Consolidation
 • Three largest PBMs dominate the market
 • Hard for plans to assess PBM performance
 • Strong “penalties” for deviating from national formulary

• Conflict of interest
 • Vertical integration
 • United Healthcare owns Optum
 • Cigna merging with Express Scripts
 • CVS Caremark owns large retail pharmacy chain
 • Recent investigation of CVS Caremark in Ohio
 • Reimbursing CVS pharmacies more than independents
Not Surprisingly, PBMs are Highly Profitable

• In 2017, Express Scripts reported gross profits of $8.76 billion
 – Don’t take possession of the drug (excl mail-order)
 – Bear little risk
 – EBITDA (earnings before interest, taxes, depreciation and amortization) ≈ 85% of gross profits, or about $7 billion in 2017.
 – Substantially higher (risk-adjusted) returns than other entities, i.e. manufacturers, pharmacies, wholesalers, insurers
 – Reflected in their stock prices
National Formularies of Largest PBMs

<table>
<thead>
<tr>
<th>GLP1 Ago</th>
<th>Brand Name</th>
<th>Generic Name</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVS Caremark</td>
<td>Adlyxin</td>
<td>Adlyxin lixisenatide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bydureon</td>
<td>Bydureon EXENATIDE MICROSPHERES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byetta</td>
<td>Byetta EXENATIDE</td>
<td>t2</td>
<td>t2</td>
<td>t3</td>
<td>t2</td>
<td>t2</td>
<td>t3</td>
<td>t2</td>
<td>t3</td>
</tr>
<tr>
<td>Tanzeum</td>
<td>Tanzeum ALBIGLUTIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trulicity</td>
<td>Trulicity DULAGLUTIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Victoza</td>
<td>Victoza 2-p LIRAGLUTIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OptumRx</td>
<td>Adlyxin</td>
<td>Adlyxin lixisenatide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bydureon</td>
<td>Bydureon EXENATIDE MICROSPHERES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byetta</td>
<td>Byetta EXENATIDE</td>
<td>t2</td>
<td>t2</td>
<td>t3</td>
<td>t2</td>
<td>t2</td>
<td>t3</td>
<td>t2</td>
<td>t3</td>
</tr>
<tr>
<td>Tanzeum</td>
<td>Tanzeum ALBIGLUTIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trulicity</td>
<td>Trulicity DULAGLUTIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Victoza</td>
<td>Victoza 2-p LIRAGLUTIDE</td>
<td>t3</td>
<td>t3</td>
<td>t2</td>
<td>t2</td>
<td>t4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Express Scripts</td>
<td>Adlyxin</td>
<td>Adlyxin lixisenatide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bydureon</td>
<td>Bydureon EXENATIDE MICROSPHERES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byetta</td>
<td>Byetta EXENATIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanzeum</td>
<td>Tanzeum ALBIGLUTIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trulicity</td>
<td>Trulicity DULAGLUTIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Victoza</td>
<td>Victoza 2-p LIRAGLUTIDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Does Greater Transparency Result in Lower Drug Prices?

• Large PBMs claim they obtain larger discounts from manufacturers
 • “It’s a black box, but still cheaper to go with us”
• But “transparent” contracts or self-managed plans have led to substantial savings
 • U. Michigan saved $55 million in 6 years;
 • NJ projects savings of $559 million over 6 years
• Exchange plans (ACA) and Medicare Part D require PBMs to report all discounts/rebates and price concessions
 • How much is passed through to the plan
 • Difference between amount paid by plan vs. pharmacy
Employee Retirement Income Security Act (ERISA)

- ERISA is a federal law that sets minimum standards for most voluntarily established pension and health plans
 - Provides protection for individuals in these plans
- Requires plans to provide participants with important information about plan features and funding
 - Plans must act in the interest of the participants
- What would happen if PBMs were subject to ERISA?
 - No spread pricing
 - Full rebate pass-through;
 - No clawbacks or favoring brands over generics
Value-based pricing is Increasing

- Portfolio pricing
- Capitated payments or "drug licenses"
- Care-Management Solutions
- Bundling of drugs and services
- Money-back guarantees or "drug warranties"
- Adherence-based pricing

USC Schaeffer
President Eisenhower’s Heart Attacks

Ike suffered from acute coronary syndrome (ACS)

- Frequently results in one or more heart attacks (AMIs) of increasing severity

Today, ACS patients are treated with a variety of drugs: aspirin, beta-blockers, ace-inhibitors, statins, and clopidogrel

- Post-AMI patients face just under 50% risk of future heart attacks

In 1955, recommended treatment for post-AMI patients was bedrest

- With this treatment, risk of future heart attacks is 100%!